Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemo therapy

Abstract Supramolecular photosensitizers (supraPSs) have emerged as effective photodynamic therapy (PDT) agents. Here, we propose the assembling capacity of supraPSs as a new strategy to construct theranostic nanoplatform with versatile functions aming at high-performance tumor therapy. By coating t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2017-02, Vol.117, p.54-65
Hauptverfasser: Chen, Wei-Hai, Luo, Guo-Feng, Qiu, Wen-Xiu, Lei, Qi, Liu, Li-Han, Wang, Shi-Bo, Zhang, Xian-Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Supramolecular photosensitizers (supraPSs) have emerged as effective photodynamic therapy (PDT) agents. Here, we propose the assembling capacity of supraPSs as a new strategy to construct theranostic nanoplatform with versatile functions aming at high-performance tumor therapy. By coating tirapazamine (TPZ)-loaded mesoporous silica nanoparticles (MSNs) with layer-by-layer (LbL) assembled multilayer, the versatile nanoplatform (TPZ@MCMSN-Gd3+ ) was obtained with the formation of supraPSs via host-guest interaction and the chelation with paramagnetic Gd3+ . The TPZ@MCMSN-Gd3+ could be specifically uptaken by CD44 receptor overexpressed tumor cells and respond to hyaluronidase (HAase) to trigger the release of therapeutics. As confirmed by in vivo studies, TPZ@MCMSN-Gd3+ showed preferential accumulation in tumor site and significantly inhibited the tumor progression by the collaboration of PDT and bioreductive chemotherapy under NIR fluorescence/MR imaging guidance. Taken together, this supraPSs based strategy paves a new paradigm of the way for the construction of theranostic nanoplatform.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2016.11.057