Mesoporous Calcium Silicate Nanoparticles with Drug Delivery and Odontogenesis Properties

Abstract Introduction Calcium silicate (CS) –based materials play an important role in the development of endodontic materials that induce bone/cementum tissue regeneration and inhibit bacterial viability. The aim of this study was to prepare novel mesoporous CS (MesoCS) nanoparticles that have oste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of endodontics 2017-01, Vol.43 (1), p.69-76
Hauptverfasser: Huang, Ching-Yuang, DDS, PhD, Huang, Tsui-Hsien, DDS, PhD, Kao, Chia-Tze, DDS, PhD, Wu, Yuan-Haw, MD, Chen, Wan-Chen, DDS, Ms, Shie, Ming-You, PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Introduction Calcium silicate (CS) –based materials play an important role in the development of endodontic materials that induce bone/cementum tissue regeneration and inhibit bacterial viability. The aim of this study was to prepare novel mesoporous CS (MesoCS) nanoparticles that have osteogenic, drug delivery, and antibacterial characteristics for endodontic materials and also have an excellent ability to develop apatite mineralization. Methods The MesoCS nanoparticles were prepared using sol-gel methods. In addition, the mesoporous structure, specific surface area, pore volume, and morphology of the MesoCS nanoparticles were analyzed. The apatite mineralization ability, in vitro odontogenic differentiation, drug delivery, and antibacterial properties of the MesoCS nanoparticles were further investigated. Results The results indicate that the 200-nm–sized MesoCS nanoparticles synthesized using a facile template method exhibited a high specific surface area and pore volume with internal mesopores (average pore size = 3.05 nm). Furthermore, the MesoCS nanoparticles can be used as drug carriers to maintain sustained release of gentamicin and fibroblast growth factor-2 (FGF-2). The MesoCS-loaded FGF-2 might stimulate more odontogenic-related protein than CS because of the FGF-2 release. Conclusions Based on this work, it can be inferred that MesoCS nanoparticles are potentially useful endodontic materials for biocompatible and osteogenic dental pulp tissue regenerative materials.
ISSN:0099-2399
1878-3554
DOI:10.1016/j.joen.2016.09.012