Sexual selection expedites the evolution of pesticide resistance

The evolution of insecticide resistance by crop pests and disease vectors causes serious problems for agriculture and health. Sexual selection can accelerate or hinder adaptation to abiotic challenges in a variety of ways, but the effect of sexual selection on resistance evolution is little studied....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolution 2016-12, Vol.70 (12), p.2746-2751
Hauptverfasser: Jacomb, Frances, Marsh, Jason, Holman, Luke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The evolution of insecticide resistance by crop pests and disease vectors causes serious problems for agriculture and health. Sexual selection can accelerate or hinder adaptation to abiotic challenges in a variety of ways, but the effect of sexual selection on resistance evolution is little studied. Here, we examine this question using experimental evolution in the pest insect Tribolium castaneum. The experimental removal of sexual selection slowed the evolution of resistance in populations treated with pyrethroid pesticide, and also reduced the rate at which resistance was lost from pesticide-free populations. These results suggest that selection arising from variance in mating and fertilization success can augment natural selection on pesticide resistance, meaning that sexual selection should be considered when designing strategies to limit the evolution of pesticide resistance.
ISSN:0014-3820
1558-5646
DOI:10.1111/evo.13074