Removal of Ni(II) and Cu(II) from aqueous solutions using 'green' zero-valent iron nanoparticles produced by oak and mulberry leaf extracts
The production of zero-valent iron nanoparticles, using extracts from natural products, represents a green and environmentally friendly method. Synthesis of 'green' zero-valent nanoparticles (nZVI) using oak and mulberry leaf extracts (OL-nZVI and ML-nZVI) proved to be a promising approach...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2016-11, Vol.74 (9), p.2115-2123 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The production of zero-valent iron nanoparticles, using extracts from natural products, represents a green and environmentally friendly method. Synthesis of 'green' zero-valent nanoparticles (nZVI) using oak and mulberry leaf extracts (OL-nZVI and ML-nZVI) proved to be a promising approach for Ni(II) and Cu(II) removal from aqueous solutions. Characterization of the produced green nZVI materials had been conducted previously and confirmed the formation of nanosize zero-valent iron particles within the size range of 10-30 nm, spherical with minimum agglomeration observed by transmission electron microscopy and scanning electron microscope morphology measurements. Batch experiments revealed that the adsorption kinetics followed a pseudo-second-order rate equation. The obtained adsorption isotherm data could be well described by the Freundlich model and OL-nZVI showed higher adsorption capacity for Ni(II) removal than ML-nZVI, while ML-nZVI adsorption capacity was higher for Cu(II). In addition, investigation of the pH effect showed that varying the initial pH value had a great effect on Ni(II) and Cu(II) removal. Adsorbed amounts of Ni(II) and Cu(II) increased with pH increase to pH 7.0 and 8.0. This study indicated that nZVI produced by a low-cost and non-toxic method with oak and mulberry leaf extracts could be used as a new material for remediation of water matrices contaminated with Ni(II) and Cu(II). |
---|---|
ISSN: | 0273-1223 1996-9732 |
DOI: | 10.2166/wst.2016.387 |