Parental thermal environment alters offspring sex ratio and fitness in an oviparous lizard

The environment experienced by parents can impact the phenotype of their offspring (parental effects), a critical component of organismal ecology and evolution in variable or changing environments. Although temperature is a central feature of the environment for ectotherms, its role in parental effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental biology 2016-08, Vol.219 (Pt 15), p.2349-2357
1. Verfasser: Schwanz, Lisa E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The environment experienced by parents can impact the phenotype of their offspring (parental effects), a critical component of organismal ecology and evolution in variable or changing environments. Although temperature is a central feature of the environment for ectotherms, its role in parental effects has been little explored until recently. Here, parental basking opportunity was manipulated in an oviparous lizard with temperature-dependent sex determination, the jacky dragon (Amphibolurus muricatus). Eggs were incubated at a temperature that typically produces a 50:50 sex ratio, and hatchlings were reared in a standard thermal environment. Offspring of parents in short bask conditions appeared to have better fitness outcomes in captive conditions than those of parents in long bask conditions - they had greater growth and survival as a function of their mass. In addition, the sex of offspring (male or female) depended on the interaction between parental treatment and egg mass, and treatment impacted whether sons or daughters grew larger in their first season. The interactive effects of treatment on offspring sex and growth are consistent with adaptive explanations for the existence of temperature-dependent sex determination in this species. Moreover, the greater performance recorded in short bask offspring may represent an anticipatory parental effect to aid offspring in predicted conditions of restricted thermal opportunity. Together, these responses constitute a crucial component of the population response to spatial or temporal variation in temperature.
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.139972