Climate change affects soil labile organic carbon fractions in a Tibetan alpine meadow

Purpose Changes in bioactive soil C pools and their temperature sensitivities will dominate the fate of soil organic C in a warmer future, which is not well understood in highland ecosystems. This study was conducted in order to evaluate climate change, especially cooling effects, on soil labile org...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of soils and sediments 2017-02, Vol.17 (2), p.326-339
Hauptverfasser: Hu, Yigang, Wang, Zengru, Wang, Qi, Wang, Shiping, Zhang, Zhishan, Zhang, Zhenhua, Zhao, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Changes in bioactive soil C pools and their temperature sensitivities will dominate the fate of soil organic C in a warmer future, which is not well understood in highland ecosystems. This study was conducted in order to evaluate climate change, especially cooling effects, on soil labile organic C (LOC) pools in a Tibetan alpine meadow. Materials and methods A short-term reciprocal translocation experiment was implemented to stimulate climate warming (downward translocation) and cooling (upward translocation) using an elevation gradient on the Tibetan Plateau. Variations in soil microbial biomass C (MBC), dissolved organic C (DOC) and LOC were analyzed. Results and discussion Over the range of soil temperature from 0.02 to 5.5 °C, warming averagely increased soil MBC, DOC and LOC by 15.3, 17.0 and 3.7 % while cooling decreased them by 11.0, 11.9 and 3.2 %, respectively. Moreover, warming generally increased the proportion of DOC in LOC but cooling had an opposite effect, while the response of the MBC proportion to DOC and LOC varied depending on vegetation type. Soil MBC, DOC and LOC pools were positively related to soil temperature and showed a hump-shaped relationship with soil moisture with a threshold of about 30–35 %. Although soil DOC was more sensitive to warming (5.1 % °C −1 ) than to cooling (3.0 % °C −1 ), soil LOC showed a symmetrical response due to regulation by soil moisture. Conclusions Our results indicated that climate change would not only change the size of soil LOC pools but also their quality. Therefore, cooling effects and regulation of soil moisture should be considered to evaluate the fate of soil organic C in Tibetan alpine meadows in a warmer future.
ISSN:1439-0108
1614-7480
DOI:10.1007/s11368-016-1565-4