Climate change affects soil labile organic carbon fractions in a Tibetan alpine meadow
Purpose Changes in bioactive soil C pools and their temperature sensitivities will dominate the fate of soil organic C in a warmer future, which is not well understood in highland ecosystems. This study was conducted in order to evaluate climate change, especially cooling effects, on soil labile org...
Gespeichert in:
Veröffentlicht in: | Journal of soils and sediments 2017-02, Vol.17 (2), p.326-339 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
Changes in bioactive soil C pools and their temperature sensitivities will dominate the fate of soil organic C in a warmer future, which is not well understood in highland ecosystems. This study was conducted in order to evaluate climate change, especially cooling effects, on soil labile organic C (LOC) pools in a Tibetan alpine meadow.
Materials and methods
A short-term reciprocal translocation experiment was implemented to stimulate climate warming (downward translocation) and cooling (upward translocation) using an elevation gradient on the Tibetan Plateau. Variations in soil microbial biomass C (MBC), dissolved organic C (DOC) and LOC were analyzed.
Results and discussion
Over the range of soil temperature from 0.02 to 5.5 °C, warming averagely increased soil MBC, DOC and LOC by 15.3, 17.0 and 3.7 % while cooling decreased them by 11.0, 11.9 and 3.2 %, respectively. Moreover, warming generally increased the proportion of DOC in LOC but cooling had an opposite effect, while the response of the MBC proportion to DOC and LOC varied depending on vegetation type. Soil MBC, DOC and LOC pools were positively related to soil temperature and showed a hump-shaped relationship with soil moisture with a threshold of about 30–35 %. Although soil DOC was more sensitive to warming (5.1 % °C
−1
) than to cooling (3.0 % °C
−1
), soil LOC showed a symmetrical response due to regulation by soil moisture.
Conclusions
Our results indicated that climate change would not only change the size of soil LOC pools but also their quality. Therefore, cooling effects and regulation of soil moisture should be considered to evaluate the fate of soil organic C in Tibetan alpine meadows in a warmer future. |
---|---|
ISSN: | 1439-0108 1614-7480 |
DOI: | 10.1007/s11368-016-1565-4 |