Flow past a sphere moving vertically in a stratified diffusive fluid

Numerical studies are described of the flows generated by a sphere moving vertically in a uniformly stratified fluid. It is found that the axisymmetric standing vortex usually found in homogeneous fluids at moderate Reynolds numbers (25 [les ] Re [les ] 200) is completely collapsed by stable stratif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2000-08, Vol.417, p.211-236
Hauptverfasser: TORRES, C. R., HANAZAKI, H., OCHOA, J., CASTILLO, J., VAN WOERT, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerical studies are described of the flows generated by a sphere moving vertically in a uniformly stratified fluid. It is found that the axisymmetric standing vortex usually found in homogeneous fluids at moderate Reynolds numbers (25 [les ] Re [les ] 200) is completely collapsed by stable stratification, generating a strong vertical jet. This is consistent with our experimental visualizations. For Re = 200 the complete collapse of the vortex occurs at Froude number F ≃ 19, and the critical Froude number decreases slowly as Re increases. The Froude number and the Reynolds number are here defined by F = W/Na and Re = 2Wa/v, with W being the descent velocity of the sphere, N the Brunt–Väisälä frequency, a the radius of the sphere and v the kinematic viscosity coefficient. The inviscid processes, including the generation of the vertical jet, have been investigated by Eames & Hunt (1997) in the context of weak stratification without buoyancy effects. They showed the existence of a singularity of vorticity and density gradient on the rear axis of the flow and also the impossibility of realizing a steady state. When there is no density diffusion, all the isopycnal surfaces which existed initially in front of the sphere accumulate very near the front surface because of density conservation and the fluid in those thin layers generates a rear jet when returning to its original position. In the present study, however, the fluid has diffusivity and the buoyancy effects also exist. The density diffusion prevents the extreme piling up of the isopycnal surfaces and allows the existence of a steady solution, preventing the generation of a singularity or a jet. On the other hand, the buoyancy effect works to increase the vertical velocity to the rear of the sphere by converting the potential energy to vertical kinetic energy, leading to the formation of a strong jet. We found that the collapse of the vortex and the generation of the jet occurs at much weaker stratifications than those necessary for the generation of strong lee waves, showing that jet formation is independent of the internal waves. At low Froude numbers (F [les ] 2) the lee wave patterns showed good agreement with the linear wave theory and the previous experiments by Mowbray & Rarity (1967). At very low Froude numbers (F [les ] 1) the drag on a sphere increases rapidly, partly due to the lee wave drag but mainly due to the large velocity of the jet. The jet causes a reduction of the pressure on the rear
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112000001002