Terrestrial organic carbon storage in a British moorland

Summary Accurate estimates for the size of terrestrial organic carbon (C) stores are needed to determine their importance in regulating atmospheric CO2 concentrations. The C stored in vegetation and soil components of a British moorland was evaluated in order to: (i) investigate the importance of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2001-04, Vol.7 (4), p.375-388
Hauptverfasser: Garnett, MarK. H., Ineson, Philip, Stevenson, Anthony C., Howard, David C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Accurate estimates for the size of terrestrial organic carbon (C) stores are needed to determine their importance in regulating atmospheric CO2 concentrations. The C stored in vegetation and soil components of a British moorland was evaluated in order to: (i) investigate the importance of these ecosystems for C storage and (ii) test the accuracy of the United Kingdom's terrestrial C inventory. The area of vegetation and soil types was determined using existing digitized maps and a Geographical Information System (GIS). The importance of evaluating C storage using 2D area projections, as opposed to true surface areas, was investigated and found to be largely insignificant. Vegetation C storage was estimated from published results of productivity studies at the site supplemented by field sampling to evaluate soil C storage. Vegetation was found to be much less important for C storage than soil, with peat soils, particularly Blanket bog, containing the greatest amounts of C. Whilst the total amount of C in vegetation was similar to the UK national C inventory's estimate for the same area, the national inventory estimate for soil C was over three times higher than the value derived in the current study. Because the UK's C inventory can be considered relatively accurate compared to many others, the results imply that current estimates for soil C storage, at national and global scales, should be treated with caution.
ISSN:1354-1013
1365-2486
DOI:10.1046/j.1365-2486.2001.00382.x