Snow–Shrub Interactions in Arctic Tundra: A Hypothesis with Climatic Implications

In the Arctic, where wind transport of snow is common, the depth and insulative properties of the snow cover can be determined as much by the wind as by spatial variations in precipitation. Where shrubs are more abundant and larger, greater amounts of drifting snow are trapped and suffer less loss d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2001-02, Vol.14 (3), p.336-344
Hauptverfasser: Sturm, Matthew, McFadden, Joseph P., Liston, Glen E., Chapin, F. Stuart, Racine, Charles H., Holmgren, Jon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the Arctic, where wind transport of snow is common, the depth and insulative properties of the snow cover can be determined as much by the wind as by spatial variations in precipitation. Where shrubs are more abundant and larger, greater amounts of drifting snow are trapped and suffer less loss due to sublimation. The snow in shrub patches is both thicker and a better thermal insulator per unit thickness than the snow outside of shrub patches. As a consequence, winter soil surface temperatures are substantially higher, a condition that can promote greater winter decomposition and nutrient release, thereby providing a positive feedback that could enhance shrub growth. If the abundance, size, and coverage of arctic shrubs increases in response to climate warming, as is expected, snow–shrub interactions could cause a widespread increase (estimated 10%–25%) in the winter snow depth. This would increase spring runoff, winter soil temperatures, and probably winter CO₂ emissions. The balance between these winter effects and changes in the summer energy balance associated with the increase in shrubs probably depends on shrub density, with the threshold for winter snow trapping occurring at lower densities than the threshold for summer effects such as shading. It is suggested that snow–shrub interactions warrant further investigation as a possible factor contributing to the transition of the arctic land surface from moist graminoid tundra to shrub tundra in response to climatic warming.
ISSN:0894-8755
1520-0442
DOI:10.1175/1520-0442(2001)014<0336:SSIIAT>2.0.CO;2