Modulation of pPS10 host range by DnaA

Summary Narrow‐host‐range plasmid pPS10, originally found in Pseudomonas savastanoi, is unable to replicate in other strains such as Escherichia coli. Here, we report that the establishment of pPS10 in E. coli can be achieved by a triple mutation in the dnaA gene of E. coli (dnaA403), leading to Q14...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2002-10, Vol.46 (1), p.223-234
Hauptverfasser: Maestro, Beatriz, Sanz, Jesús M., Faelen, Michel, Couturier, Martine, Díaz‐Orejas, Ramón, Fernández‐Tresguerres, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Narrow‐host‐range plasmid pPS10, originally found in Pseudomonas savastanoi, is unable to replicate in other strains such as Escherichia coli. Here, we report that the establishment of pPS10 in E. coli can be achieved by a triple mutation in the dnaA gene of E. coli (dnaA403), leading to Q14amber, P297S and A412V changes in the DnaA host replication protein (DnaA403 mutant). As the E. coli strain used contained double amber suppressor mutations (supE, supF), the amber codon in dnaA403 can be translated into glutamine or tyrosine. Genetic analysis of DnaA proteins containing either the individual changes or their different combinations suggests that the P297S mutation is crucial for the establishment of the pPS10 replicon in E. coli. The data also indicate that the P297S change is toxic to the cell and that the additional mutations in DnaA403 could contribute to neutralize this toxicity. To our knowledge, this work reports the first chromosome mutant described in the literature that allows the host range broadening of a plasmid, highlights the essential role played by DnaA in the establishment of pPS10 replicon in E. coli and provides support for the hypothesis that interactions between RepA and DnaA modulate the establish‐ment of pPS10 in that bacteria and probably in other species.
ISSN:0950-382X
1365-2958
DOI:10.1046/j.1365-2958.2002.03155.x