Salmonella AvrA Effector Inhibits the Key Proinflammatory, Anti-Apoptotic NF-[kappa]B Pathway

Secreted prokaryotic effector proteins have evolved to modulate the cellular functions of specific eukaryotic hosts. Generally, these proteins are considered virulence factors that facilitate parasitism. However, in certain plant and insect eukaryotic/prokaryotic relationships, effector proteins are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2002-09, Vol.169 (6), p.2846-2850
Hauptverfasser: Collier-Hyams, L S, Zeng, H, Sun, J, Tomlinson, AD, Bao, Z Q, Chen, H, Madara, J L, Orth, K, Neish, A S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Secreted prokaryotic effector proteins have evolved to modulate the cellular functions of specific eukaryotic hosts. Generally, these proteins are considered virulence factors that facilitate parasitism. However, in certain plant and insect eukaryotic/prokaryotic relationships, effector proteins are involved in the establishment of commensal or symbiotic interactions. In this study, we report that the AvrA protein from Salmonella typhimurium, a common enteropathogen of humans, is an effector molecule that inhibits activation of the key proinflammatory NF-[kappa]B transcription factor and augments apoptosis in human epithelial cells. This activity is similar but mechanistically distinct from that described for YopJ, an AvrA homolog expressed by the bacterial pathogen Yersinia. We suggest that AvrA may limit virulence in vertebrates in a manner analogous to avirulence factors in plants, and as such, is the first bacterial effector from a mammalian pathogen that has been ascribed such a function.
ISSN:0022-1767