Involvement of an Upstream Stimulatory Factor as Well as cAMP-responsive Element-binding Protein in the Activation of Brain-derived Neurotrophic Factor Gene Promoter I
The use of different brain-derived neurotrophic factor (BDNF) gene promoters results in the differential production of 5′-alternative transcripts, suggesting versatile functions of BDNF in neurons. Among four BDNF promoters I, II, III, and IV (BDNF-PI, -PII, -PIII, and -PIV), BDNF-PI was markedly ac...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2002-09, Vol.277 (39), p.35920-35931 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of different brain-derived neurotrophic factor (BDNF) gene promoters results in the differential production of 5′-alternative transcripts, suggesting versatile functions of BDNF in neurons. Among four BDNF promoters I, II, III, and IV (BDNF-PI, -PII, -PIII, and -PIV), BDNF-PI was markedly activated, as well as BDNF-PIII, by Ca2+ signals evoked via neuronal activity. However, little is known about the mechanisms for the transcriptional activation of BDNF-PI. Using rat cortical neurons in culture, we assigned the promoter sequences responsible for the Ca2+signal-mediated activation of BDNF-PI and found that the Ca2+-responsive elements were located in two separate (distal and proximal) regions and that the DNA sequences in the proximal region containing cAMP-responsive element (CRE), which is overlapped by the upstream stimulatory factor (USF)-binding element, were largely responsible for the activation of BDNF-PI. CRE-binding protein (CREB) family transcription factors and USF1/USF2 bind to this overlapping site, depending upon their preferred sequences which also control the magnitude of the activation. Overexpression of dominant negative CREB or USF reduced the BDNF-PI activation. These findings support that not only CREB but also USF1/USF2 contributes to Ca2+ signal-mediated activation of BDNF-PI through the recognition of an overlapping CRE and USF-binding element. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M204784200 |