Dynamics of Hydrogel-Assisted Giant Unilamellar Vesicle Formation from Unsaturated Lipid Systems
While current research is centered on observing biophysical properties and phenomena in giant unilamellar vesicles (GUVs), little is known about fabrication parameters that control GUV formation. Using different lipids and rehydration buffers, we directly observe varying dynamics of hydrogel-assiste...
Gespeichert in:
Veröffentlicht in: | Langmuir 2016-12, Vol.32 (48), p.12702-12709 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | While current research is centered on observing biophysical properties and phenomena in giant unilamellar vesicles (GUVs), little is known about fabrication parameters that control GUV formation. Using different lipids and rehydration buffers, we directly observe varying dynamics of hydrogel-assisted GUV formation via fluorescence microscopy. We observe the effects of buffer ionic strength, osmolarity, agarose density, and pH on the formation of GUVs using neutral and charged lipids. We find that increasing rehydration buffer ionic strength correlates with increased vesicle size and rate of GUV formation. Increasing buffer acidity increased the rate of GUV formation, while more basic environments slowed the rate. For buffers containing 500 mM sucrose, GUV formation was overall inhibited and only tubules formed. Observations of GUV formation dynamics elucidate parametric effects of charge, ionic strength, pH, and osmolarity, demonstrating the versatility of this biomimetic platform. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.6b01889 |