Food Fingerprinting: Metabolomic Approaches for Geographical Origin Discrimination of Hazelnuts (Corylus avellana) by UPLC-QTOF-MS

Ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was used for geographical origin discrimination of hazelnuts (Corylus avellana L.). Four different LC-MS methods for polar and nonpolar metabolites were evaluated with regard to best discrimination abil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2016-12, Vol.64 (48), p.9253-9262
Hauptverfasser: Klockmann, Sven, Reiner, Eva, Bachmann, René, Hackl, Thomas, Fischer, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was used for geographical origin discrimination of hazelnuts (Corylus avellana L.). Four different LC-MS methods for polar and nonpolar metabolites were evaluated with regard to best discrimination abilities. The most suitable method was used for analysis of 196 authentic samples from harvest years 2014 and 2015 (Germany, France, Italy, Turkey, Georgia), selecting and identifying 20 key metabolites with significant differences in abundancy (5 phosphatidylcholines, 3 phosphatidylethanolamines, 4 diacylglycerols, 7 triacylglycerols, and γ-tocopherol). Classification models using soft independent modeling of class analogy (SIMCA), linear discriminant analysis based on principal component analysis (PCA-LDA), support vector machine classification (SVM), and a customized statistical model based on confidence intervals of selected metabolite levels were created, yielding 99.5% training accuracy at its best by combining SVM and SIMCA. Forty nonauthentic hazelnut samples were subsequently used to estimate as realistically as possible the prediction capacity of the models.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.6b04433