Three-Dimensional Fibrous Network of Na0.21 MnO2 for Aqueous Sodium-Ion Hybrid Supercapacitors

Sodium-ion hybrid supercapacitors are potential energy-storage devices and have recently received enormous interest. However, the development of cathode materials and the use of nonaqueous electrolyte remain a great challenge. Hence, aqueous Na-ion hybrid supercapacitors based on a three-dimensional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2017-02, Vol.23 (10), p.2379-2386
Hauptverfasser: Karikalan, Natarajan, Karuppiah, Chelladurai, Chen, Shen-Ming, Velmurugan, Murugan, Gnanaprakasam, Periyasami
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sodium-ion hybrid supercapacitors are potential energy-storage devices and have recently received enormous interest. However, the development of cathode materials and the use of nonaqueous electrolyte remain a great challenge. Hence, aqueous Na-ion hybrid supercapacitors based on a three-dimensional network of NaMnO2 were developed. The cathode material was synthesized by the electro-oxidation of potassium manganese hexacyanoferrate nanocubes. The oxidized compound was confirmed to be Na0.21 MnO2 by various physical characterization methods. Manganese dioxide is a well-characterized material for aqueous asymmetric pseudocapacitors, but its usage at high operating voltages is limited due to the electrochemical stability of water. Nevertheless, high-potential and high-performance aqueous supercapacitors exhibiting a cell potential of 2.7 V were developed. Further, the practical applicability of an asymmetric supercapacitor based on NaMnO2 (cathode) and reduced graphene oxide (anode) was demonstrated by powering a 2.1 V red LED.
ISSN:1521-3765
DOI:10.1002/chem.201604878