Ibulocydine sensitizes human hepatocellular carcinoma cells to TRAIL-induced apoptosis via calpain-mediated Bax cleavage
Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) induces apoptosis selectively in cancer cells without affecting the majority of normal human cells. However, hepatocellular carcinoma (HCC) cells often display resistance to TRAIL-induced apoptosis. Ibulocydine (IB) is an isobutyrate est...
Gespeichert in:
Veröffentlicht in: | The international journal of biochemistry & cell biology 2017-02, Vol.83, p.47-55 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) induces apoptosis selectively in cancer cells without affecting the majority of normal human cells. However, hepatocellular carcinoma (HCC) cells often display resistance to TRAIL-induced apoptosis. Ibulocydine (IB) is an isobutyrate ester pro-drug of a novel synthetic Cdk inhibitor that targets Cdk7 and Cdk9. In this study, we show that treatment with subtoxic doses of IB in combination with TRAIL displays potent cytotoxicity in TRAIL-resistant human HCC cells. Combination of IB and TRAIL was found to synergistically induce apoptosis through activation of caspases, which was blocked by a pan-caspase inhibitor (zVAD). Although the expression of Mcl-1 and survivin were reduced by IB plus TRAIL, overexpression of Mcl-1 and survivin did not block the cell death induced by co-treatment. Moreover, overexpression of Bcl-xL did not significantly interfere with the cell death induced by co-treatment of IB and TRAIL. Interestingly, the combination treatment induced cleavage of Bax, which was translocated to mitochondria upon induction of apoptosis. Furthermore, down-regulation of Bax by small interfering RNA effectively reduced the cell death and loss of mitochondrial membrane potential (MMP) caused by co-treatment with IB and TRAIL. Finally, pre-treatment of HCC cells with a calpain inhibitor effectively blocked IB plus TRAIL-induced cleavage of Bax and apoptosis. Collectively, our results demonstrate that IB increases the sensitivity of human HCC cells to TRAIL via mitochondria signaling pathway mediated by calpain-induced cleavage of Bax, suggesting that combined treatment with IB and TRAIL may offer an effective therapeutic strategy for human HCC. |
---|---|
ISSN: | 1357-2725 1878-5875 |
DOI: | 10.1016/j.biocel.2016.12.001 |