Site-specific Loss of Acetylation upon Phosphorylation of Histone H3

Post-translational modification of histones is a central aspect of gene regulation. Emerging data indicate that modification at one site can influence modification of a second site. As one example, histone H3 phosphorylation at serine 10 (Ser10) facilitates acetylation of lysine 14 (Lys14) by Gcn5 i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2002-08, Vol.277 (33), p.29496-29502
Hauptverfasser: Edmondson, Diane G., Davie, Judith K., Zhou, Jenny, Mirnikjoo, Banafsheh, Tatchell, Kelly, Dent, Sharon Y.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Post-translational modification of histones is a central aspect of gene regulation. Emerging data indicate that modification at one site can influence modification of a second site. As one example, histone H3 phosphorylation at serine 10 (Ser10) facilitates acetylation of lysine 14 (Lys14) by Gcn5 in vitro (1, 2). In vivo, phosphorylation of H3 precedes acetylation at certain promoters. Whether H3 phosphorylation globally affects acetylation, or whether it affects all acetylation sites in H3 equally, is not known. We have taken a genetic approach to this question by mutating Ser10 in H3 to fix either a negative or a neutral charge at this position, followed by analysis of the acetylation states of the mutant histones using site-specific antibodies. Surprisingly, we find that conversion of Ser10 to glutamate (S10E) or aspartate (S10D) causes almost complete loss of H3 acetylation at lysine 9 (Lys9) in vivo. Acetylation of Lys9is also significantly reduced in cells bearing mutations in the Glc7 phosphatase that increase H3 phosphorylation levels. Mutation of Ser10 in H3 and the concomitant loss of Lys9acetylation has minimal effects on expression of a Gcn5-dependent reporter gene. However, synergistic growth defects are observed upon loss of GCN5 in cells bearing H3 Ser10 mutations that are reminiscent of delays in G2/M progression caused by combined loss ofGCN5 and acetylation site mutations. Together these results demonstrate that H3 phosphorylation directly causes site-specific and opposite changes in acetylation levels of two residues within this histone, Lys9 and Lys14, and they highlight the importance of these histone modifications to normal cell functions.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M200651200