Bacterial Foraging Algorithm Based on Quantum-Behaved Particle Swarm Optimization for Global Optimization
Bacterial Foraging Optimization(BFA) algorithm has recently emerged as a very powerful technique for real parameter optimization,but the E.coli algorithm depends on random search directions which may lead to delay in reaching the global solution.The quantum-behaved particle swarm optimization (QPSO)...
Gespeichert in:
Veröffentlicht in: | Advanced Materials Research 2013-01, Vol.655-657, p.948-954 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bacterial Foraging Optimization(BFA) algorithm has recently emerged as a very powerful technique for real parameter optimization,but the E.coli algorithm depends on random search directions which may lead to delay in reaching the global solution.The quantum-behaved particle swarm optimization (QPSO) algorithm may lead to possible entrapment in local minimum solutions. In order to overcome the delay in optimization and to further enhance the performance of BFA,a bacterial foraging algorithm based on QPSO(QPSO-BFA) is presented.The new algorithm is proposed to combines both algorithms’ advantages in order to get better optimization values. Simulation results on eight benchmark functions show that the proposed algorithm is superior to the BFA,QPSO and BF-PSO. |
---|---|
ISSN: | 1022-6680 1662-8985 1662-8985 |
DOI: | 10.4028/www.scientific.net/AMR.655-657.948 |