Differential morphology of the superior olivary complex of Meriones unguiculatus and Monodelphis domestica revealed by calcium-binding proteins
In mammals, the superior olivary complex (SOC) of the brainstem is composed of nuclei that integrate afferent auditory originating from both ears. Here, the expression of different calcium-binding proteins in subnuclei of the SOC was studied in distantly related mammals, the Mongolian gerbil ( Merio...
Gespeichert in:
Veröffentlicht in: | Brain Structure and Function 2016-12, Vol.221 (9), p.4505-4523 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In mammals, the superior olivary complex (SOC) of the brainstem is composed of nuclei that integrate afferent auditory originating from both ears. Here, the expression of different calcium-binding proteins in subnuclei of the SOC was studied in distantly related mammals, the Mongolian gerbil (
Meriones unguiculatus
) and the gray short-tailed opossum (
Monodelphis domestica
) to get a better understanding of the basal nuclear organization of the SOC. Combined immunofluorescence labeling of the calcium-binding proteins (CaBPs) parvalbumin, calbindin-D28k, and calretinin as well as
pan
-
neuronal
markers displayed characteristic distribution patterns highlighting details of neuronal architecture of SOC nuclei. Parvalbumin was found in almost all neurons of SOC nuclei in both species, while calbindin and calretinin were restricted to specific cell types and axonal terminal fields. In both species, calbindin displayed a ubiquitous and mostly selective distribution in neurons of the medial nucleus of trapezoid body (MNTB) including their terminal axonal fields in different SOC targets. In
Meriones,
calretinin and calbindin showed non-overlapping expression patterns in neuron somata and terminal fields throughout the SOC. In
Monodelphis
, co-expression of calbindin and calretinin was observed in the MNTB, and hence both CaBPs were also co-localized in terminal fields within the adjacent SOC nuclei. The distribution patterns of CaBPs in both species are discussed with respect to the intrinsic neuronal SOC circuits as part of the auditory brainstem system that underlie the binaural integrative processing of acoustic signals as the basis for localization and discrimination of auditory objects. |
---|---|
ISSN: | 1863-2653 1863-2661 0340-2061 |
DOI: | 10.1007/s00429-015-1181-x |