Analysis of a stochastic approximation algorithm for computing quasi-stationary distributions

We study the convergence properties of a Monte Carlo estimator proposed in the physics literature to compute the quasi-stationary distribution on a transient set of a Markov chain (see De Oliveira and Dickman (2005), (2006), and Dickman and Vidigal (2002)). Using the theory of stochastic approximati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 2016-09, Vol.48 (3), p.792-811
Hauptverfasser: Blanchet, J., Glynn, P., Zheng, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the convergence properties of a Monte Carlo estimator proposed in the physics literature to compute the quasi-stationary distribution on a transient set of a Markov chain (see De Oliveira and Dickman (2005), (2006), and Dickman and Vidigal (2002)). Using the theory of stochastic approximations we verify the consistency of the estimator and obtain an associated central limit theorem. We provide an example showing that convergence might occur very slowly if a certain eigenvalue condition is violated. We alleviate this problem using an easy-to-implement projection step combined with averaging.
ISSN:0001-8678
1475-6064
DOI:10.1017/apr.2016.28