Modeling and analysis of distributed feedback quantum dot passively mode-locked lasers
In this paper, we investigate numerically two proposed monolithic distributed feedback quantum dot passively mode-locked lasers (DFB-QDMLLs) with and without gratings in the saturable absorber (SA) section in order to enhance two important performances of QDMLLs for ultrahigh-bit-rate and single-mod...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2016-07, Vol.55 (19), p.5102-5109 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate numerically two proposed monolithic distributed feedback quantum dot passively mode-locked lasers (DFB-QDMLLs) with and without gratings in the saturable absorber (SA) section in order to enhance two important performances of QDMLLs for ultrahigh-bit-rate and single-mode applications. We find out that depending on the length of the grating, optical pulses with durations of about 3-8 ps at approximately 2nd and 4th harmonics of cavity round-trip frequencies can be generated by the proposed structures. We also compare the temporal and spectral behaviors of these structures under specified bias conditions and SA lengths. It is shown that DFB-QDMLLs have the ability to generate optical pulses with more peak power than grating-embedded saturable absorber (GESA-DFB-QDMLL) structures which generate shorter pulses with narrower spectral bandwidths. We also show that DFB-QDMLLs operate in a larger range of absorber voltages while the other structure is very sensitive to absorber voltage and operates well for middle ranges of this parameter. |
---|---|
ISSN: | 0003-6935 1559-128X 2155-3165 1539-4522 |
DOI: | 10.1364/AO.55.005102 |