A multigrid-like algorithm for probabilistic domain decomposition

We present an iterative scheme, reminiscent of the Multigrid method, to solve large boundary value problems with Probabilistic Domain Decomposition (PDD). In it, increasingly accurate approximations to the solution are used as control variates in order to reduce the Monte Carlo error of the followin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2016-10, Vol.72 (7), p.1790-1810
Hauptverfasser: Bernal, Francisco, Acebrón, Juan A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an iterative scheme, reminiscent of the Multigrid method, to solve large boundary value problems with Probabilistic Domain Decomposition (PDD). In it, increasingly accurate approximations to the solution are used as control variates in order to reduce the Monte Carlo error of the following iterates—resulting in an overall acceleration of PDD for a given error tolerance. The key feature of the proposed algorithm is the ability to approximately predict the speedup with little computational overhead and in parallel. Besides, the theoretical framework allows to explore other aspects of PDD, such as stability. One numerical example is worked out, yielding an improvement between one and two orders of magnitude over the previous version of PDD.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2016.07.030