A Skew-normal copula-driven GLMM
This paper presents a method for fitting a copula‐driven generalized linear mixed models. For added flexibility, the skew‐normal copula is adopted for fitting. The correlation matrix of the skew‐normal copula is used to capture the dependence structure within units, while the fixed and random effect...
Gespeichert in:
Veröffentlicht in: | Statistica Neerlandica 2016-11, Vol.70 (4), p.396-413 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a method for fitting a copula‐driven generalized linear mixed models. For added flexibility, the skew‐normal copula is adopted for fitting. The correlation matrix of the skew‐normal copula is used to capture the dependence structure within units, while the fixed and random effects coefficients are estimated through the mean of the copula. For estimation, a Monte Carlo expectation–maximization algorithm is developed. Simulations are shown alongside a real data example from the Framingham Heart Study. |
---|---|
ISSN: | 0039-0402 1467-9574 |
DOI: | 10.1111/stan.12092 |