A Skew-normal copula-driven GLMM

This paper presents a method for fitting a copula‐driven generalized linear mixed models. For added flexibility, the skew‐normal copula is adopted for fitting. The correlation matrix of the skew‐normal copula is used to capture the dependence structure within units, while the fixed and random effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistica Neerlandica 2016-11, Vol.70 (4), p.396-413
Hauptverfasser: Das, Kalyan, Elmasri, Mohamad, Sen, Arusharka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a method for fitting a copula‐driven generalized linear mixed models. For added flexibility, the skew‐normal copula is adopted for fitting. The correlation matrix of the skew‐normal copula is used to capture the dependence structure within units, while the fixed and random effects coefficients are estimated through the mean of the copula. For estimation, a Monte Carlo expectation–maximization algorithm is developed. Simulations are shown alongside a real data example from the Framingham Heart Study.
ISSN:0039-0402
1467-9574
DOI:10.1111/stan.12092