Inhibitory effect of Sophora subprosrate polysaccharide on mitochondria oxidative stress induced by PCV-2 infection in RAW264.7 cells

In the present study, the inhibitory effect of Sophora subprosrate polysaccharide (SSP) on PCV-2-induced mitochondrial respiratory burst in RAW264.7 cells was first investigated. The findings suggested that SOD activity and the anti-superoxide anion radical activity of the RAW264.7 cells were signif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2017-02, Vol.95, p.608-617
Hauptverfasser: Su, Zi-Jie, Yang, Jian, Luo, Wen-Juan, Wei, Ying-Yi, Shuai, Xue-Hong, Hu, Ting-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, the inhibitory effect of Sophora subprosrate polysaccharide (SSP) on PCV-2-induced mitochondrial respiratory burst in RAW264.7 cells was first investigated. The findings suggested that SOD activity and the anti-superoxide anion radical activity of the RAW264.7 cells were significantly decreased after PCV-2 infection, and MnSOD mRNA levels were significantly decreased, while NOX2 mRNA levels and protein expression were increased. Meanwhile, the O2•− levels and mitochondrial membrane potentials were significantly increased. After treatment with SSP, significant increases in the activities of SOD, anti-superoxide anion radical activities, and MnSOD mRNA levels in the PCV-2 infected cells were observed. Meanwhile, significant increases in NOX2 mRNA levels and protein expression, O2•− levels and mitochondrial membrane potentials were also observed. The results showed that PCV2 infection resulted in the mitochondria oxidative stress of RAW264.7 cells as indicated by an increasing mitochondrial membrane potential, which was then inhibited by SSP. It was concluded that RAW264.7 cells treated with SSP could suffer from mitochondrial damage, which may be mediated by the inhibition of the mitochondrial membrane potential.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2016.11.101