A novel multi-channel quadrature Doppler backward scattering reflectometer on the HL-2A tokamak

A novel 16-channel fixed frequency Doppler backward scattering (DBS) reflectometer system has been developed on the HL-2A tokamak. This system is based on the filter-based feedback loop microwave source (FFLMS) technique, which has lower phase noise and lower power variation compared with present tu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2016-11, Vol.87 (11), p.113501-113501
Hauptverfasser: Shi, Zhongbing, Zhong, Wulu, Jiang, Min, Yang, Zengchen, Zhang, Boyu, Shi, Peiwan, Chen, Wei, Wen, Jie, Chen, Chengyuan, Fu, Bingzhong, Liu, Zetian, Ding, Xuantong, Yang, Qingwei, Duan, Xuru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel 16-channel fixed frequency Doppler backward scattering (DBS) reflectometer system has been developed on the HL-2A tokamak. This system is based on the filter-based feedback loop microwave source (FFLMS) technique, which has lower phase noise and lower power variation compared with present tunable frequency generation and comb frequency array generation techniques [J. C. Hillesheim et al. Rev. Sci. Instrum. 80, 083507 (2009) and W. A. Peebles et al. Rev. Sci. Instrum. 81, 10D902 (2010)]. The 16-channel DBS system is comprised of four × four-frequency microwave transmitters and direct quadrature demodulation receivers. The working frequencies are 17-24 GHz and 31-38 GHz with the frequency interval of 1 GHz. They are designed to measure the localized intermediate wave-number (k ⊥ ρ ∼ 1–2, k ⊥ ∼ 2–9 cm−1) density fluctuations and the poloidal rotation velocity profile of turbulence. The details of the system design and laboratory tests are presented. Preliminary results of Doppler spectra measured by the multi-channel DBS reflectometer systems are obtained. The plasma rotation and turbulence distribution during supersonic molecular beam injection are analyzed.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.4966680