Foxp3 promoter methylation impairs suppressive function of regulatory T cells in biliary atresia

Biliary atresia (BA) is characterized by progressive inflammation of the biliary system leading to liver cirrhosis, necessitating liver transplantation in pediatric patients. Various cell types have been reported to participate in the proinflammatory response in rhesus rotavirus (RRV)-induced BA mou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology: Gastrointestinal and liver physiology 2016-12, Vol.311 (6), p.G989-G997
Hauptverfasser: Li, Kang, Zhang, Xi, Yang, Li, Wang, Xin-Xing, Yang, De-Hua, Cao, Guo-Qing, Li, Shuai, Mao, Yong-Zhong, Tang, Shao-Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biliary atresia (BA) is characterized by progressive inflammation of the biliary system leading to liver cirrhosis, necessitating liver transplantation in pediatric patients. Various cell types have been reported to participate in the proinflammatory response in rhesus rotavirus (RRV)-induced BA mouse models, including T helper (Th) 1, Th2, Th17, CD8 T cells, and natural killer cells. The immune suppressive regulatory T (Treg) cells, on the contrary, were reported not to function properly. The underlying mechanism is largely unknown. Focusing on the impaired suppressive function of Treg, we found methylation status of CpG islands within the Foxp3 promoter region of Treg cells in BA patients and murine models were both increased. Moreover, by injecting 5-aza-2'-deoxycytidine (Aza) as DNA-methylation inhibitor to RRV-infected mice, BA phenotypes were alleviated. Furthermore, Treg cells isolated from "RRV+Aza"-injected mice had better suppressive function than Treg cells from mice injected with RRV only, both in vivo and ex vivo. Thus we concluded that aberrant increased methylation status of "Foxp3 promoter" in Treg cells leads to impaired Treg suppressive function, exacerbating inflammatory injury in BA.
ISSN:0193-1857
1522-1547
DOI:10.1152/ajpgi.00032.2016