Effect of Prior Austenite Grain Size Refinement by Thermal Cycling on the Microstructural Features of As-Quenched Lath Martensite

Current trends in steels are focusing on refined martensitic microstructures to obtain high strength and toughness. An interesting manner to reduce the size of martensitic substructure is by reducing the size of the prior austenite grain (PAG). This work analyzes the effect of PAGS refinement by the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2016-11, Vol.47 (11), p.5288-5301
Hauptverfasser: Hidalgo, Javier, Santofimia, Maria Jesus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current trends in steels are focusing on refined martensitic microstructures to obtain high strength and toughness. An interesting manner to reduce the size of martensitic substructure is by reducing the size of the prior austenite grain (PAG). This work analyzes the effect of PAGS refinement by thermal cycling on different microstructural features of as-quenched lath martensite in a 0.3C-1.6Si-3.5Mn (wt pct) steel. The application of thermal cycling is found to lead to a refinement of the martensitic microstructures and to an increase of the density of high misorientation angle boundaries after quenching; these are commonly discussed to be key structural parameters affecting strength. Moreover, results show that as the PAGS is reduced, the volume fraction of retained austenite increases, carbides are refined and the concentration of carbon in solid solution as well as the dislocation density in martensite increase. All these microstructural modifications are related with the manner in which martensite forms from different prior austenite conditions, influenced by the PAGS.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-016-3525-4