Foot–Ankle Fractures and Injury Probability Curves from Post-mortem Human Surrogate Tests

This purpose of this study was to replicate foot–ankle injuries seen in the military and derive human injury probability curves using the human cadaver model. Lower legs were isolated below knee from seventeen unembalmed human cadavers and they were aligned in a 90–90 posture (plantar surface orthog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 2016-10, Vol.44 (10), p.2937-2947
Hauptverfasser: Yoganandan, Narayan, Chirvi, Sajal, Pintar, Frank A., Uppal, Harmeeth, Schlick, Michael, Banerjee, Anjishnu, Voo, Liming, Merkle, Andrew, Kleinberger, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This purpose of this study was to replicate foot–ankle injuries seen in the military and derive human injury probability curves using the human cadaver model. Lower legs were isolated below knee from seventeen unembalmed human cadavers and they were aligned in a 90–90 posture (plantar surface orthogonal to leg). The specimens were loaded along the tibia axis by applying short-time duration pulses, using a repeated testing protocol. Injuries were documented using pre- and post-test X-rays, computed tomography scans, and dissection. Peak force-based risk curves were derived using survival analysis and accounted for data censoring. Fractures were grouped into all foot–ankle (A), any calcaneus (B), and any tibia injuries (C), respectively. Calcaneus and/or distal tibia/pilon fractures occurred in fourteen tests. Axial forces were the greatest and least for groups C and B, respectively. Times attainments of forces for all groups were within ten milliseconds. The Weibull function was the optimal probability distribution for all groups. Age was significant ( p  
ISSN:0090-6964
1573-9686
DOI:10.1007/s10439-016-1598-2