Soft PEDOT:PSS aerogel architectures for thermoelectric applications
ABSTRACT In this study, we present the first characterization of pure PEDOT:PSS aerogels fabricated via a facile and reproducible freeze–drying technique using no additional crosslinking agents, and it is demonstrated that these materials provide a promising path to new classes of polymeric thermoel...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2017-01, Vol.134 (3), p.np-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
In this study, we present the first characterization of pure PEDOT:PSS aerogels fabricated via a facile and reproducible freeze–drying technique using no additional crosslinking agents, and it is demonstrated that these materials provide a promising path to new classes of polymeric thermoelectric materials. The morphology, chemical composition, and thermoelectric properties of these robust and mechanically stable aerogels were investigated upon treatment with ethylene glycol. By direct comparison to fully dense PEDOT:PSS thick films, it is shown that the electronic portion of thermoelectric transport in PEDOT:PSS was remarkably unaffected by morphological porosity, presenting exciting opportunities for novel soft materials that simultaneously integrate thermoelectric behavior while also capitalizing on the high surface area scaffolding accessible in such aerogel architectures. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44070. |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.44070 |