Quantization of conductance minimum and index theorem

We discuss the minimum value of the zero-bias differential conductance G sub(min) in a junction consisting of a normal metal and a nodal superconductor preserving time-reversal symmetry. Using the quasiclassical Green function method, we show that G sub(min) is quantized at (4e super(2)/h )N sub(ZES...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2016-08, Vol.94 (5), Article 054512
Hauptverfasser: Ikegaya, Satoshi, Suzuki, Shu-Ichiro, Tanaka, Yukio, Asano, Yasuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physical review. B
container_volume 94
creator Ikegaya, Satoshi
Suzuki, Shu-Ichiro
Tanaka, Yukio
Asano, Yasuhiro
description We discuss the minimum value of the zero-bias differential conductance G sub(min) in a junction consisting of a normal metal and a nodal superconductor preserving time-reversal symmetry. Using the quasiclassical Green function method, we show that G sub(min) is quantized at (4e super(2)/h )N sub(ZES) in the limit of strong impurity scatterings in the normal metal at the zero temperature. The integer N sub(ZES) represents the number of perfect transmission channels through the junction. An analysis of the chiral symmetry of the Hamiltonian indicates that N sub(ZES) corresponds to the Atiyah-Singer index in mathematics.
doi_str_mv 10.1103/PhysRevB.94.054512
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845811263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845811263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-11184e8e6d6df0b4f2921bb269f8d32d3b85d00b241bacae0261469885a6efc83</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWGr_gKtZupl68zRZavEFBR_oOmSSGzrSSepkRqy_3krV1TmLw8fhI-SUwpxS4OePq215xo-ruRFzkEJSdkAmTChTG6PM4X-XcExmpbwBAFVgLsBMiHwaXRraLze0OVU5Vj6nMPrBJY9V16a2G7vKpVC1KeBnNaww99idkKPo1gVnvzklrzfXL4u7evlwe7-4XNaeGxhqSqkWqFEFFSI0IjLDaNMwZaIOnAXeaBkAGiZo47xDYIrurmotncLoNZ-Ssz130-f3Ectgu7Z4XK9dwjwWu8NLTSlTfDdl-6nvcyk9Rrvp2871W0vB_miyf5qsEXaviX8D4DFcZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845811263</pqid></control><display><type>article</type><title>Quantization of conductance minimum and index theorem</title><source>American Physical Society Journals</source><creator>Ikegaya, Satoshi ; Suzuki, Shu-Ichiro ; Tanaka, Yukio ; Asano, Yasuhiro</creator><creatorcontrib>Ikegaya, Satoshi ; Suzuki, Shu-Ichiro ; Tanaka, Yukio ; Asano, Yasuhiro</creatorcontrib><description>We discuss the minimum value of the zero-bias differential conductance G sub(min) in a junction consisting of a normal metal and a nodal superconductor preserving time-reversal symmetry. Using the quasiclassical Green function method, we show that G sub(min) is quantized at (4e super(2)/h )N sub(ZES) in the limit of strong impurity scatterings in the normal metal at the zero temperature. The integer N sub(ZES) represents the number of perfect transmission channels through the junction. An analysis of the chiral symmetry of the Hamiltonian indicates that N sub(ZES) corresponds to the Atiyah-Singer index in mathematics.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.94.054512</identifier><language>eng</language><subject>Channels ; Condensed matter ; Conductance ; Mathematical analysis ; Quantization ; Scattering ; Superconductors ; Symmetry</subject><ispartof>Physical review. B, 2016-08, Vol.94 (5), Article 054512</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-11184e8e6d6df0b4f2921bb269f8d32d3b85d00b241bacae0261469885a6efc83</citedby><cites>FETCH-LOGICAL-c390t-11184e8e6d6df0b4f2921bb269f8d32d3b85d00b241bacae0261469885a6efc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Ikegaya, Satoshi</creatorcontrib><creatorcontrib>Suzuki, Shu-Ichiro</creatorcontrib><creatorcontrib>Tanaka, Yukio</creatorcontrib><creatorcontrib>Asano, Yasuhiro</creatorcontrib><title>Quantization of conductance minimum and index theorem</title><title>Physical review. B</title><description>We discuss the minimum value of the zero-bias differential conductance G sub(min) in a junction consisting of a normal metal and a nodal superconductor preserving time-reversal symmetry. Using the quasiclassical Green function method, we show that G sub(min) is quantized at (4e super(2)/h )N sub(ZES) in the limit of strong impurity scatterings in the normal metal at the zero temperature. The integer N sub(ZES) represents the number of perfect transmission channels through the junction. An analysis of the chiral symmetry of the Hamiltonian indicates that N sub(ZES) corresponds to the Atiyah-Singer index in mathematics.</description><subject>Channels</subject><subject>Condensed matter</subject><subject>Conductance</subject><subject>Mathematical analysis</subject><subject>Quantization</subject><subject>Scattering</subject><subject>Superconductors</subject><subject>Symmetry</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWGr_gKtZupl68zRZavEFBR_oOmSSGzrSSepkRqy_3krV1TmLw8fhI-SUwpxS4OePq215xo-ruRFzkEJSdkAmTChTG6PM4X-XcExmpbwBAFVgLsBMiHwaXRraLze0OVU5Vj6nMPrBJY9V16a2G7vKpVC1KeBnNaww99idkKPo1gVnvzklrzfXL4u7evlwe7-4XNaeGxhqSqkWqFEFFSI0IjLDaNMwZaIOnAXeaBkAGiZo47xDYIrurmotncLoNZ-Ssz130-f3Ectgu7Z4XK9dwjwWu8NLTSlTfDdl-6nvcyk9Rrvp2871W0vB_miyf5qsEXaviX8D4DFcZQ</recordid><startdate>20160819</startdate><enddate>20160819</enddate><creator>Ikegaya, Satoshi</creator><creator>Suzuki, Shu-Ichiro</creator><creator>Tanaka, Yukio</creator><creator>Asano, Yasuhiro</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160819</creationdate><title>Quantization of conductance minimum and index theorem</title><author>Ikegaya, Satoshi ; Suzuki, Shu-Ichiro ; Tanaka, Yukio ; Asano, Yasuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-11184e8e6d6df0b4f2921bb269f8d32d3b85d00b241bacae0261469885a6efc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Channels</topic><topic>Condensed matter</topic><topic>Conductance</topic><topic>Mathematical analysis</topic><topic>Quantization</topic><topic>Scattering</topic><topic>Superconductors</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikegaya, Satoshi</creatorcontrib><creatorcontrib>Suzuki, Shu-Ichiro</creatorcontrib><creatorcontrib>Tanaka, Yukio</creatorcontrib><creatorcontrib>Asano, Yasuhiro</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikegaya, Satoshi</au><au>Suzuki, Shu-Ichiro</au><au>Tanaka, Yukio</au><au>Asano, Yasuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantization of conductance minimum and index theorem</atitle><jtitle>Physical review. B</jtitle><date>2016-08-19</date><risdate>2016</risdate><volume>94</volume><issue>5</issue><artnum>054512</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We discuss the minimum value of the zero-bias differential conductance G sub(min) in a junction consisting of a normal metal and a nodal superconductor preserving time-reversal symmetry. Using the quasiclassical Green function method, we show that G sub(min) is quantized at (4e super(2)/h )N sub(ZES) in the limit of strong impurity scatterings in the normal metal at the zero temperature. The integer N sub(ZES) represents the number of perfect transmission channels through the junction. An analysis of the chiral symmetry of the Hamiltonian indicates that N sub(ZES) corresponds to the Atiyah-Singer index in mathematics.</abstract><doi>10.1103/PhysRevB.94.054512</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2016-08, Vol.94 (5), Article 054512
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_miscellaneous_1845811263
source American Physical Society Journals
subjects Channels
Condensed matter
Conductance
Mathematical analysis
Quantization
Scattering
Superconductors
Symmetry
title Quantization of conductance minimum and index theorem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantization%20of%20conductance%20minimum%20and%20index%20theorem&rft.jtitle=Physical%20review.%20B&rft.au=Ikegaya,%20Satoshi&rft.date=2016-08-19&rft.volume=94&rft.issue=5&rft.artnum=054512&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.94.054512&rft_dat=%3Cproquest_cross%3E1845811263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845811263&rft_id=info:pmid/&rfr_iscdi=true