Quantization of conductance minimum and index theorem
We discuss the minimum value of the zero-bias differential conductance G sub(min) in a junction consisting of a normal metal and a nodal superconductor preserving time-reversal symmetry. Using the quasiclassical Green function method, we show that G sub(min) is quantized at (4e super(2)/h )N sub(ZES...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2016-08, Vol.94 (5), Article 054512 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We discuss the minimum value of the zero-bias differential conductance G sub(min) in a junction consisting of a normal metal and a nodal superconductor preserving time-reversal symmetry. Using the quasiclassical Green function method, we show that G sub(min) is quantized at (4e super(2)/h )N sub(ZES) in the limit of strong impurity scatterings in the normal metal at the zero temperature. The integer N sub(ZES) represents the number of perfect transmission channels through the junction. An analysis of the chiral symmetry of the Hamiltonian indicates that N sub(ZES) corresponds to the Atiyah-Singer index in mathematics. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.94.054512 |