Quantization of conductance minimum and index theorem

We discuss the minimum value of the zero-bias differential conductance G sub(min) in a junction consisting of a normal metal and a nodal superconductor preserving time-reversal symmetry. Using the quasiclassical Green function method, we show that G sub(min) is quantized at (4e super(2)/h )N sub(ZES...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2016-08, Vol.94 (5), Article 054512
Hauptverfasser: Ikegaya, Satoshi, Suzuki, Shu-Ichiro, Tanaka, Yukio, Asano, Yasuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss the minimum value of the zero-bias differential conductance G sub(min) in a junction consisting of a normal metal and a nodal superconductor preserving time-reversal symmetry. Using the quasiclassical Green function method, we show that G sub(min) is quantized at (4e super(2)/h )N sub(ZES) in the limit of strong impurity scatterings in the normal metal at the zero temperature. The integer N sub(ZES) represents the number of perfect transmission channels through the junction. An analysis of the chiral symmetry of the Hamiltonian indicates that N sub(ZES) corresponds to the Atiyah-Singer index in mathematics.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.94.054512