Convexity and constructive infima
We show constructively that every quasi-convex uniformly continuous function f : C → R + has positive infimum, where C is a convex compact subset of R n . This implies a constructive separation theorem for convex sets.
Gespeichert in:
Veröffentlicht in: | Archive for mathematical logic 2016-11, Vol.55 (7-8), p.873-881 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show constructively that every quasi-convex uniformly continuous function
f
:
C
→
R
+
has positive infimum, where
C
is a convex compact subset of
R
n
. This implies a constructive separation theorem for convex sets. |
---|---|
ISSN: | 0933-5846 1432-0665 |
DOI: | 10.1007/s00153-016-0502-y |