Electronic and magnetic properties of Cd-doped zigzag AlN nanoribbons from first principles
The effect of Cd impurity on the electronic structure and magnetic properties of hydrogen-terminated AlN nanoribbons with zigzag edges (ZAlNNRs) was investigate using the band structure results obtained through the full potential linearized augmented plane wave (FP-LAPW) method within the density fu...
Gespeichert in:
Veröffentlicht in: | Rare metals 2016-10, Vol.35 (10), p.771-778 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of Cd impurity on the electronic structure and magnetic properties of hydrogen-terminated AlN nanoribbons with zigzag edges (ZAlNNRs) was investigate using the band structure results obtained through the full potential linearized augmented plane wave (FP-LAPW) method within the density functional theory (DFT). The exchange correlation potential was treated by the generalized gradient approximation within the Perdew scheme. The calculated results show that the H-terminated zigzag AlN nanoribbon is semiconducting and nonmagnetic material with a direct band gap of about 2.78 eV, while the Cd-doped H-terminated ZAlNNR structures show complete (100 %) spin polarization very close to the Fermi level, which will result in spin-anisotropic transport. The charge transport is totally dominated by Cd spin down electrons in the H-terminated ZAlNNR. These results suggest potential applications for the development of using the AlN nanoribbons in nanoelectronics and magnetoelectronic devices as a base. |
---|---|
ISSN: | 1001-0521 1867-7185 |
DOI: | 10.1007/s12598-015-0471-z |