Construction of a full row-rank matrix system for multiple scanning directions in discrete tomography
A full row-rank system matrix generated by scans along two directions in discrete tomography was recently studied. In this paper, we generalize the result to multiple directions. Let Ax=h be a reduced binary linear system generated by scans along three directions. Using geometry, it is shown in this...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2017-02, Vol.311, p.529-538 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A full row-rank system matrix generated by scans along two directions in discrete tomography was recently studied. In this paper, we generalize the result to multiple directions. Let Ax=h be a reduced binary linear system generated by scans along three directions. Using geometry, it is shown in this paper that the linearly dependent rows of the system matrix A can be explicitly identified and a full row-rank matrix can be obtained after the removal of those rows. The results could be extended to any number of multiple directions. Therefore, certain software packages requiring a full row-rank system matrix can be adopted to reconstruct an image. Meanwhile, the cost of computation is reduced by using a full row-rank matrix. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2016.08.039 |