A Piezoelectric Based Energy Harvester with Magnetic Interactions: Modelling and Simulation

In recent years, utilizing kinetic energy in mechanical vibrations has become an interesting area of research. This is due to ubiquitous sources of vibration energy, coupled with the ever increasing demands to power wireless sensing electronics and Microelectromechanical (MEMs) devices with low ener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced Materials Research 2015-07, Vol.1115, p.549-554
Hauptverfasser: Saleh, Tanveer, Ibrahima, Dauda Sh, Muthalif, Asan G.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, utilizing kinetic energy in mechanical vibrations has become an interesting area of research. This is due to ubiquitous sources of vibration energy, coupled with the ever increasing demands to power wireless sensing electronics and Microelectromechanical (MEMs) devices with low energy requirements. Thus, researchers have ventured into developing different system configurations with the aim of harvesting vibration energy to power these devices. Cantilever beam systems with piezoelectric layer have been used as vibration energy scavengers due to their abilities of converting kinetic energy in vibrating bodies into electrical energy, whereas permanent magnets have been used to improve their performance. The only unresolved challenge is to develop energy harvesters that can produce optimum energy at a wider bandwidth. In this study, a mathematical model of a system of cantilever beams with piezoelectric layers having a magnetic coupled tip mass is proposed. The lumped parameter model of the harvester is developed to estimate the power output of the proposed harvester, and to visualise the effect of magnetic coupled tip mass in widening the frequency bandwidth of the energy harvester. Preliminary Simulation results using MATLAB have however shown the effectiveness of the proposed system.
ISSN:1022-6680
1662-8985
1662-8985
DOI:10.4028/www.scientific.net/AMR.1115.549