Fast preparation of ultrafine monolayered transition-metal dichalcogenide quantum dots using electrochemical shock for explosive detection
A simple, general and fast method called "electrochemical shock" is developed to prepare monolayered transition-metal dichalcogenide (TMD) QDs with an average size of 2-4 nm and an average thickness of 0.85 ± 0.5 nm with only about 10 min of ultrasonication. Just like nails hammered into a...
Gespeichert in:
Veröffentlicht in: | Chemical communications (Cambridge, England) England), 2016-01, Vol.52 (76), p.11442-11445 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A simple, general and fast method called "electrochemical shock" is developed to prepare monolayered transition-metal dichalcogenide (TMD) QDs with an average size of 2-4 nm and an average thickness of 0.85 ± 0.5 nm with only about 10 min of ultrasonication. Just like nails hammered into a plate, the electrochemical shock with Al
3+
ions and the following extraction with the help of oleic acid can disintegrate bulk TMD crystals into ultrafine TMD QDs. The fast-prepared QDs are then applied to detect highly explosive molecules such as 2,4,6-trinitrophenol (TNP) with a low detection limit of 10
−6
M. Our versatile method could be broadly applicable for the fast production of ultrathin QDs of other materials with great promise for various applications.
A simple, general and fast method called "electrochemical shock" is developed to prepare monolayered transition-metal dichalcogenide (TMD) QDs with an average size of 2-4 nm and an average thickness of 0.85 ± 0.5 nm with only about 10 min of ultrasonication. |
---|---|
ISSN: | 1359-7345 1364-548X |
DOI: | 10.1039/c6cc06325j |