Existence and continuity of positive solutions on a parameter for second-order impulsive differential equations
Applying the eigenvalue theory and theory of α -concave operator, we establish some new sufficient conditions to guarantee the existence and continuity of positive solutions on a parameter for a second-order impulsive differential equation. Furthermore, two nonexistence results of positive solutions...
Gespeichert in:
Veröffentlicht in: | Boundary value problems 2016-09, Vol.2016 (1), p.1-22, Article 163 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Applying the eigenvalue theory and theory of
α
-concave operator, we establish some new sufficient conditions to guarantee the existence and continuity of positive solutions on a parameter for a second-order impulsive differential equation. Furthermore, two nonexistence results of positive solutions are also given. In particular, we prove that the unique solution
u
λ
(
t
)
of the problem is strongly increasing and depends continuously on the parameter
λ
. |
---|---|
ISSN: | 1687-2770 1687-2762 1687-2770 |
DOI: | 10.1186/s13661-016-0672-x |