Algorithm to compute abelian subalgebras and ideals in Malcev algebras

In this paper, we introduce an algorithmic procedure that computes abelian subalgebras and ideals of a given finite‐dimensional Malcev algebra. All the computations are performed by using the non‐zero brackets in the law of the algebra as input. Additionally, the algorithm also computes the α and β...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2016-11, Vol.39 (16), p.4892-4900
Hauptverfasser: Ceballos, M., Núñez, J., Tenorio, Á. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce an algorithmic procedure that computes abelian subalgebras and ideals of a given finite‐dimensional Malcev algebra. All the computations are performed by using the non‐zero brackets in the law of the algebra as input. Additionally, the algorithm also computes the α and β invariants of these algebras, and as a supporting output, a list of abelian ideals and subalgebras of maximal dimension is returned too. To implement this algorithm, we have used the symbolic computation package MAPLE 12, performing a brief computational and statistical study for it and its implementation. Copyright © 2016 John Wiley & Sons, Ltd.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.3940