Group Testing with Multiple Inhibitor Sets and Error-Tolerant and Its Decoding Algorithms
In this article, we advance a new group testing model [Formula: see text] with multiple inhibitor sets and error-tolerant and propose decoding algorithms for it to identify all its positives by using [Formula: see text]-disjunct matrix. The decoding complexity for it is [Formula: see text], where [F...
Gespeichert in:
Veröffentlicht in: | Journal of computational biology 2016-10, Vol.23 (10), p.821-829 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we advance a new group testing model [Formula: see text] with multiple inhibitor sets and error-tolerant and propose decoding algorithms for it to identify all its positives by using [Formula: see text]-disjunct matrix. The decoding complexity for it is [Formula: see text], where [Formula: see text]. Moreover, we extend this new group testing to threshold group testing and give the threshold group testing model [Formula: see text] with multiple inhibitor sets and error-tolerant. By using [Formula: see text]-disjunct matrix, we propose its decoding algorithms for gap g = 0 and g > 0, respectively. Finally, we point out that the new group testing is the natural generalization for the clone model. |
---|---|
ISSN: | 1066-5277 1557-8666 |
DOI: | 10.1089/cmb.2014.0202 |