Group Testing with Multiple Inhibitor Sets and Error-Tolerant and Its Decoding Algorithms

In this article, we advance a new group testing model [Formula: see text] with multiple inhibitor sets and error-tolerant and propose decoding algorithms for it to identify all its positives by using [Formula: see text]-disjunct matrix. The decoding complexity for it is [Formula: see text], where [F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational biology 2016-10, Vol.23 (10), p.821-829
Hauptverfasser: Zhao, Shufang, He, Yichao, Zhang, Xinlu, Xu, Wen, Wu, Weili, Gao, Suogang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we advance a new group testing model [Formula: see text] with multiple inhibitor sets and error-tolerant and propose decoding algorithms for it to identify all its positives by using [Formula: see text]-disjunct matrix. The decoding complexity for it is [Formula: see text], where [Formula: see text]. Moreover, we extend this new group testing to threshold group testing and give the threshold group testing model [Formula: see text] with multiple inhibitor sets and error-tolerant. By using [Formula: see text]-disjunct matrix, we propose its decoding algorithms for gap g = 0 and g > 0, respectively. Finally, we point out that the new group testing is the natural generalization for the clone model.
ISSN:1066-5277
1557-8666
DOI:10.1089/cmb.2014.0202