Interpolation in reproducing kernel Hilbert spaces based on random subdivision schemes

In this paper we present a Bayesian framework for interpolating data in a reproducing kernel Hilbert space associated with a random subdivision scheme, where not only approximations of the values of a function at some missing points can be obtained, but also uncertainty estimates for such predicted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2017-02, Vol.311, p.342-353
Hauptverfasser: Cotronei, Mariantonia, Di Salvo, Rosa, Holschneider, Matthias, Puccio, Luigia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we present a Bayesian framework for interpolating data in a reproducing kernel Hilbert space associated with a random subdivision scheme, where not only approximations of the values of a function at some missing points can be obtained, but also uncertainty estimates for such predicted values. This random scheme generalizes the usual subdivision by taking into account, at each level, some uncertainty given in terms of suitably scaled noise sequences of i.i.d. Gaussian random variables with zero mean and given variance, and generating, in the limit, a Gaussian process whose correlation structure is characterized and used for computing realizations of the conditional posterior distribution. The hierarchical nature of the procedure may be exploited to reduce the computational cost compared to standard techniques in the case where many prediction points need to be considered.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2016.08.002