Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator

Ferroelectric absorbers, which promote carrier separation and exhibit above-gap photovoltages, are attractive candidates for constructing efficient solar cells. Using the ferroelectric insulator BaTiO 3 we show how photogeneration and the collection of hot, non-equilibrium electrons through the bulk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2016-09, Vol.10 (9), p.611-616
Hauptverfasser: Spanier, Jonathan E., Fridkin, Vladimir M., Rappe, Andrew M., Akbashev, Andrew R., Polemi, Alessia, Qi, Yubo, Gu, Zongquan, Young, Steve M., Hawley, Christopher J., Imbrenda, Dominic, Xiao, Geoffrey, Bennett-Jackson, Andrew L., Johnson, Craig L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ferroelectric absorbers, which promote carrier separation and exhibit above-gap photovoltages, are attractive candidates for constructing efficient solar cells. Using the ferroelectric insulator BaTiO 3 we show how photogeneration and the collection of hot, non-equilibrium electrons through the bulk photovoltaic effect (BPVE) yields a greater-than-unity quantum efficiency. Despite absorbing less than a tenth of the solar spectrum, the power conversion efficiency of the BPVE device under 1 sun illumination exceeds the Shockley–Queisser limit for a material of this bandgap. We present data for devices that feature a single-tip electrode contact and an array with 24 tips (total planar area of 1 × 1 μm 2 ) capable of generating a current density of 17 mA cm –2 under illumination of AM1.5 G. In summary, the BPVE at the nanoscale provides an exciting new route for obtaining high-efficiency photovoltaic solar energy conversion. The Shockley–Queisser limit for solar cells is overcome in the ferroelectric insulator BaTiO 3 .
ISSN:1749-4885
1749-4893
DOI:10.1038/nphoton.2016.143