Effect of oxygen on the mechanical properties of copper and copper-matrix composites hardened by melt-synthesized chromium carbides
Thermal analysis is used to study the saturation of the copper melt by oxygen from an oxygen-containing gas phase and the possibility of deoxidation of this melt by nanosized diamond–graphite, which enters in the reaction mixture used to synthesize chromium carbide in the production of copper-matrix...
Gespeichert in:
Veröffentlicht in: | Russian metallurgy Metally 2016-05, Vol.2016 (5), p.419-423 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermal analysis is used to study the saturation of the copper melt by oxygen from an oxygen-containing gas phase and the possibility of deoxidation of this melt by nanosized diamond–graphite, which enters in the reaction mixture used to synthesize chromium carbide in the production of copper-matrix composites, are studied. The oxygen and chromium carbide contents are found to affect the mechanical properties of copper and copper-matrix composites. Diamond–graphite is shown to have a high refining ability, which can substantially increase the plasticity of copper and copper-matrix composites. A low chromium carbide content is found to play a modifying role in grain refinement, and a high chromium carbide content is shown to cause the formation of a precipitation-hardened structure and an increase in the physicomechanical properties of copper-matrix composites. |
---|---|
ISSN: | 0036-0295 1555-6255 1531-8648 |
DOI: | 10.1134/S0036029516050049 |