Direct synthesis of PEG-encapsulated gold nanoparticles using branched copolymer nanoreactors

We report a method of directly synthesizing gold nanoparticles that are coated with poly(ethylene glycol) (PEG) for applications in biology and medicine. The particles are grown within the cores of micelle-like structures formed by pH-responsive branched copolymers of poly(ethylene glycol) methacryl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2014-01, Vol.4 (53), p.27702-27707
Hauptverfasser: Dunlop, Iain E., Ryan, Mary P., Goode, Angela E., Schuster, Carlos, Terrill, Nicholas J., Weaver, Jonathan V. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report a method of directly synthesizing gold nanoparticles that are coated with poly(ethylene glycol) (PEG) for applications in biology and medicine. The particles are grown within the cores of micelle-like structures formed by pH-responsive branched copolymers of poly(ethylene glycol) methacrylate (PEGMA) and 2-diethylamino methacrylate (DEAMA). The process is cheap and scalable, with PEGylated gold particles prepared in two straightforward steps from commercially available monomers and salts. The formation of gold nanoparticles with mean size of 45 Å is confirmed by transmission electron microscopy. Kinetic studies of nanoparticle growth by small-angle X-ray scattering (SAXS) show that the particles form slowly over a period of >17 hours. This process can be modified by exposure to high-intensity X-rays, which cause widespread rapid nucleation leading to a larger number of smaller particles.
ISSN:2046-2069
2046-2069
DOI:10.1039/C4RA03500C