Facile synthetic strategy of oleophilic zirconia nanoparticles allows preparation of highly stable thermo-conductive coolant
We report a simple one-step method of fabricating monodisperse zirconium oxide nanoparticles by decomposing a zirconium oleate complex in a high boiling organic solvent. The X-ray and transmission electron microscopy of nanocrystals indicated the formation of monoclinic zirconia. The surfactant capp...
Gespeichert in:
Veröffentlicht in: | RSC advances 2014-01, Vol.4 (53), p.28020-28028 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report a simple one-step method of fabricating monodisperse zirconium oxide nanoparticles by decomposing a zirconium oleate complex in a high boiling organic solvent. The X-ray and transmission electron microscopy of nanocrystals indicated the formation of monoclinic zirconia. The surfactant capped zirconia nanoparticles produced excellent dispersions in oils. The suitability of the nanofluids in heat transport was carefully investigated by measuring suspension stability, thermal conductivity and viscosity as a function of temperature. The effect of particle loading and temperature on the thermal conductivity of the oil based nanofluids and other promising features indicated potential application of ZrO
2
based nanofluids in the heat transport sector. A thermal conductivity enhancement of ∼10.3% was achieved with 1.7 vol% zirconia nanoparticle loading at room temperature. The TC of the nanofluids was remarkably higher than the same predicted by Maxwell and Hamilton–Crosser models. |
---|---|
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/C4RA03270E |