Effects of Micro-structure and Micro-parameters on Brazilian Tensile Strength Using Flat-Joint Model

It has been widely accepted that tensile strength plays a dominant role in the failure mechanism of rock or rock-like material. Tensile strength is determined mainly via two methods: the direct tension test and Brazilian test. Due to the strictness of preparing the specimen and difficulty of conduct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rock mechanics and rock engineering 2016-09, Vol.49 (9), p.3575-3595
Hauptverfasser: Xu, Xueliang, Wu, Shunchuan, Gao, Yongtao, Xu, Miaofei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been widely accepted that tensile strength plays a dominant role in the failure mechanism of rock or rock-like material. Tensile strength is determined mainly via two methods: the direct tension test and Brazilian test. Due to the strictness of preparing the specimen and difficulty of conducting the direct tension test, Brazilian test has been widely applied to determine the tensile strength of geo-materials. However, there is no exact standard for Brazilian test specimen. Moreover, Brazilian tensile strength (BTS) is affected by many factors, such as loading rate, loading platen width, model size. So far, most parametric studies of geo-materials have involved compression tests, but few studies have systematically focused on Brazilian test. The continuum methods have difficulty reproducing the failure process of Brazilian test, and 2D discrete element methods can not reflect the real mechanical behavior of a 3D cylindrical disk specimen. Moreover, the standard bonded-particle model has intrinsic problems in simulating geo-materials. This paper, using a 3D flat-joint model (FJM3D), investigates the effects of micro-structure and micro-parameters on BTS. The micro-structure consists of model size, model resolution, and degree of heterogeneity. The micro-parameters include the average coordination number, crack density, and bond strength. The effects on BTS are summarized, and this summary will be useful for guiding future Brazilian tests. Finally, FJM3D is used to calibrate Brisbane tuff by Brazilian test and the uniaxial compression test. The simulation results are in good agreement with those measured from experiments, and the failure process of Brazilian test is analyzed in detail at the microscale. Because of the heterogeneity of rock, cracks initiate near the loading platen instead of the center of the specimen. Even so, BTS can be an useful tensile index for geo-materials in a triaxial stress state, which is similar to the physical situations, and Brazilian test is helpful for further understanding the failure mechanism of geo-materials.
ISSN:0723-2632
1434-453X
DOI:10.1007/s00603-016-1021-1