IFU spectroscopy of southern planetary nebulae – III

In this paper, we describe integral field spectroscopic observations of four southern Galactic planetary nebulae (PNe), M3-4, M3-6, Hen2-29 and Hen2-37 covering the spectral range 3400–7000 Å. We derive the ionization structure, the physical conditions, the chemical compositions and the kinematical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2016-10, Vol.462 (2), p.1393-1404
Hauptverfasser: Ali, A., Dopita, M. A., Basurah, H. M., Amer, M. A., Alsulami, R., Alruhaili, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we describe integral field spectroscopic observations of four southern Galactic planetary nebulae (PNe), M3-4, M3-6, Hen2-29 and Hen2-37 covering the spectral range 3400–7000 Å. We derive the ionization structure, the physical conditions, the chemical compositions and the kinematical characteristics of these PNe and find good agreement with previous studies that relied upon the long-slit technique in their co-spatial area. From their chemical compositions as well as their spatial and kinematic characteristics, we determined that Hen2-29 is of the Peimbert type I (He- and N-rich), while the other three are of type II. The strength of the nebular He ii line reveals that M3-3, Hen2-29 and Hen2-37 are of mid to high excitation classes while M3-6 is a low-excitation PN. A series of emission-line maps extracted from the data cubes were constructed for each PN to describe its overall structure. These show remarkable morphological diversity. Spatially resolved spectroscopy of M3-6 shows that the recombination lines of C ii, C iii, C iv and N iii are of nebular origin, rather than arising from the central star as had been previously proposed. This result increases doubts regarding the weak emission-line star (WELS) classification raised by Basurah et al. In addition, they reinforce the probability that most genuine cases of WELS arise from irradiation effects in close binary central stars.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stw1744