Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection

We report a narrowband and tunable diamond Raman laser generating eye-safe radiation suitable for water vapor detection. Frequency conversion of a tunable pump laser operating from 1063 to 1066 nm to the second order Stokes component in an external standing-wave cavity yielded 7 W of multimode outpu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2016-11, Vol.24 (24), p.27812-27820
Hauptverfasser: Lux, Oliver, Sarang, Soumya, Williams, Robert J, McKay, Aaron, Mildren, Richard P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report a narrowband and tunable diamond Raman laser generating eye-safe radiation suitable for water vapor detection. Frequency conversion of a tunable pump laser operating from 1063 to 1066 nm to the second order Stokes component in an external standing-wave cavity yielded 7 W of multimode output power in the wavelength range from 1483 to 1488 nm at a conversion efficiency of 21%. Stable single longitudinal mode operation was achieved over the whole tuning range at low power (0.1 W), whereas incorporation of a volume Bragg grating as an output coupler enabled much higher stable power to be attained (0.5 W). A frequency stability of 40 MHz was obtained over a minute without active cavity stabilization. It was found that mode stability is aided via seeding of the second Stokes by four-wave mixing, which leads to a doubling of the mode-hopping interval. The laser was employed for the detection of water vapor in ambient air, demonstrating its potential for remote sensing applications.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.24.027812