Electrically Evoked Responses in the Rabbit Cortex Induced by Current Steering With Penetrating Optic Nerve Electrodes

Current steering is a neural stimulation strategy that uses simultaneous stimulation of adjacent electrodes to produce additional intermediate stimulation sites and thus improves spatial resolution. We investigated the feasibility of current steering using electrophysiological and computational meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Investigative ophthalmology & visual science 2016-11, Vol.57 (14), p.6327-6338
Hauptverfasser: Yan, Yan, Lu, Yiliang, Li, Menghui, Ma, Zengguang, Cao, Pengjia, Chen, Yao, Sun, Xiaodong, Chai, Xinyu, Ren, Qiushi, Li, Liming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current steering is a neural stimulation strategy that uses simultaneous stimulation of adjacent electrodes to produce additional intermediate stimulation sites and thus improves spatial resolution. We investigated the feasibility of current steering using electrophysiological and computational methods after implanting paired penetrating electrodes into the rabbit's optic nerve (ON). Penetrating electrodes at different interelectrode distances were implanted into the ON and electrically evoked cortical potentials (EEPs) in V1 recorded with a 6 × 8 array. The current thresholds, EEP amplitudes, and spatial distributions were analyzed during current steering. Computational simulation studies were performed based on finite element models to calculate the area and spatial distribution of recruited ON fibers using a current steering stimulation strategy. Threshold reduction and EEP amplitude enhancement were found with simultaneous stimulation of closely spaced electrode pairs. Spatially shifted cortical responses were achieved using current steering, whereas the amplitudes and spatial spreads of the responses were similar to that elicited by a single electrode. Computational simulations suggested that the centroid of the ON recruitment area could be modulated by current steering while the total recruitment area did not show any appreciable variability at a fixed current intensity. Current steering is a useful strategy to enhance the spatial resolution of an ON prosthesis without increasing the number of physical electrodes. This study provides useful information for optimizing the design of stimulation strategies with a penetrating ON prosthesis.
ISSN:1552-5783
1552-5783
DOI:10.1167/iovs.15-17543