Cholinesterases inhibition and molecular modeling studies of piperidyl-thienyl and 2-pyrazoline derivatives of chalcones
Super-activation of cholinesterases (acetylcholinesterase and butyrylcholinesterase) are linked to various neurological problems most precisely Alzheimer's disease (AD), which leads to senile dementia. Therefore, cholinesterases (AChE & BChE) inhibition are considered as a promising strateg...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2017-01, Vol.482 (4), p.615-624 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Super-activation of cholinesterases (acetylcholinesterase and butyrylcholinesterase) are linked to various neurological problems most precisely Alzheimer's disease (AD), which leads to senile dementia. Therefore, cholinesterases (AChE & BChE) inhibition are considered as a promising strategy for the treatment of Alzheimer's disease. FDA approved drugs for the treatment of AD, belong to a group of cholinesterase inhibitors. However, none of them is able to combat or completely abrogate the disease progression. Herein, we report a series of newly synthesized chalcone derivatives with anti-AD potential. For this purpose, a series of piperidyl-thienyl and 2-pyrazoline derivatives of chalcones were tested for their cholinesterases (AChE & BChE) inhibitory activity. All compounds were found as selective inhibitor of AChE. In piperidyl chalcones derivatives compound 1e having IC50 of 0.16 ± 0.008 μM and 2m in 2-pyrazoline chalcones with IC50 of 0.13 ± 0.006 μM, were found to be the most potent inhibitors of AChE, exhibiting ≈142 and ≈ 173-fold greater inhibitory potential compared to the reference inhibitor i.e., Neostigmine (IC50 ± SEM = 22.2 ± 3.2 μM). Molecular docking studies of most potent inhibitors were carried out to investigate the binding interactions inside the active site. Molecular docking study revealed that potent compounds and co-crystalized ligand had same binding orientation within the active site of target enzyme. Most of these compounds are selective inhibitors of AChE with a potential use against progressive neurodegenerative disorder and age related problems.
Binding orientation of active compounds and co-crystalized ligand within active site of target enzyme. [Display omitted] |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2016.11.082 |