KIT and BRAF heterogeneous mutations in gastrointestinal stromal tumors after secondary imatinib resistance

Background and aims Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumor of the digestive tract and characterized by expression of KIT protein. Imatinib is the frontline therapy for metastatic and unresectable GIST patients showing clinical responses in 80 % of cases. Despit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association 2015-10, Vol.18 (4), p.796-802
Hauptverfasser: Zheng, Song, Huang, Ke-er, Pan, Yue-long, Zhou, Yao, Pan, Song-dan, Li, Xin, Jia, Jing, Zheng, Xiao-liang, Tao, De-you
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background and aims Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumor of the digestive tract and characterized by expression of KIT protein. Imatinib is the frontline therapy for metastatic and unresectable GIST patients showing clinical responses in 80 % of cases. Despite the often long-lasting clinical benefit seen in most patients treated with imatinib, many will eventually suffer disease progression. The most frequent mechanism of imatinib resistance in GIST is the acquisition of secondary mutations in either KIT or PDGFRA . There are also some imatinib-resistant GIST patients lacking an identifiable mechanism of treatment failure. Recently, activating BRAF mutation was detected in a small percentage of GISTs. In this study, we report a case of GIST with acquired resistance to imatinib during therapy. Methods Histological, immunohistochemical, Western blot and mutational analyses were performed on GIST tissues before and after imatinib resistance. Results The imatinib-resistant tumor showed not only heterogeneous mutations of KIT and BRAF besides the primary mutation, but also transdifferentiation into a rhabdomyosarcoma phenotype. According to Western blot analysis, in imatinib-resistant GIST with both KIT V559D and BRAF V600E mutations, the inhibition of KIT V559D by imatinib caused a strong decrease of AKT phosphorylation, while ERK1/2 phosphorylation was not affected. Conclusions This finding, in combination with the loss of KIT expression, suggests the possibility of activation of RAS-RAF-MEK-ERK pathways driven by a KIT-independent oncogenic mechanism. Understanding the genetic aberrations beyond KIT and PDGFRA may lead to the identification of additional therapeutic targets for GISTs.
ISSN:1436-3291
1436-3305
DOI:10.1007/s10120-014-0414-7